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ABSTRACT

Drainage of the hearth is an important component of a successful

operation of a blast furnace. In order to investigate the influence of

tapping conditions due to the shape of the slag surface, the one-phase flow of

slag during tapping was modeled as a free boundary problem. This problem was

reformulated by using the method of integrated penalty and, then was simulated

by using a finite difference method developed by the author.

The objective of this report is to give a mathematical justification of

the penalty method formulation, in which the perturbation with respect to the

domain and the asymptotic properties of solutions of the boundary value

problem for an elliptic equation with penalty terms are used.
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SIGNIFICANCE AND EXPLANATION

We can observe many phenomena involving Free Boundaries in various fields

of engineering and applied science, for example, jet problems, transient

multi-fluid flows, the equilibria of plasmas, Stefan problems, free boundary

problems in optimal shape designs and others. Hence there is interest and

need to develop efficient and accurate numerical methods for the solution of

these problems. Some free boundary problems mentioned above have been

successfully solved by using the penalty method developed by the author and

his colleagues. An important feature of our approach is that the outward

normal derivative of the solution at the free boundary is approximated

efficiently.

The objective of this report is to give the required mathematical

justification for the model problem reformulated by the method of integrated

penalty. Specifically, we prove the convergence of the penalized free

boundary to the original one as the penalizing parameter C tends to zero.

Here the perturbation theory with respect to the domain and the asymptotic

properties of the solutions of a boundary value problem for an elliptic

equation with penalty terms are used. As an application, the unsteady slag

flow in the hearth is considered. Acc.
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FREE BOUNDARY PROBLEM FOR UNSTEADY SLAG FLOW IN THE HEARTH

Hideo t Awarada*

I* INTRODUCTION

The hearth drainage is one of the most important factors for successful

blast furnace operation. The slag is considered to be more difficult to drain

than the metal because of its higher viscosity. When the slag surface reaches

the level of tap hole, the furnace gas starts to blow out. Then tapping

should be stopped. The amount of undrained molten material at the end of

tapping is estimated by the shape of the slag surface. In order to determine

the influence of tapping conditions due to the shape of the slag surface, the

three-dimensional problem of the slag flow during tapping was solved by using

the finite element method by Ichihara and Fukutake 12). They concluded that

their computation scheme is not efficient in practical use. This

computational instability was resolved by Kawarada and Natori [11], using the

penalty method developed by themselves [5-7, 10].

The objective of this report is to give mathematical justification of

penalty formulation, i.e., to prove the convergence of the penalized free

boundary to the one of an original problem when we let the penalizing

parameter e tend to zero. In section 2, we review the formulation for two-

dimensional problems of the slag flow. In section 3, we give the penalized

formulation by using the method of integrated penalty. Section 4 is devoted

to the assumptions and the main theorem. In section 5, we prepare some

propositions needed to prove the main theorem, in which the perturbation of

the penalized solution with respect to the domain in discussed. Finally, we

give the proof of the main theorem in section 6.

*Deprtment of Applied Physics, University of Tokyo, Tokyo, Japan

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



2. FORMULATION

We consider two-dimensional problem of the slag flow in the hearth, which

is bounded by impermeable boundaries y = 0, x = 0 and x - a (c.f. Figure

1). One of the vertical boundaries, x = 0, has a tapping hole near the

bottom, which we denote by r0 .

y

b

Free boundary

• XIt)y (X,t)

Tapping hole

r0
0 a x

Figure 1

We assume that the hearth is packed with coke, through the bed of which

the slag flows. Then Darcy's law can be applied for the flow of slag:

(2.1) V - -dV

where V denotes velocity of slag. The potential 4 is defined as follows:

P - P 0
(2.2) - + y

Pg

where p: density of slag,

g: gravitational acceleration,

p: pressure of slag,
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po: pressure at reference point,

y: vertical height from a horizontal plane,

d: permeability of slag.

If we substitute V into the equation of continuity:

(2.3) div V - 0 ,

then we have

(2.4) At - 0 in the slag region 0 (t) (t e [0,TI) ,

under the condition d - constant and T is tapping period. Q (t) is

defined as follows:

(2.5) a 0(t) - ((x,y)I0 < x < a, 0 4 y ( *(x,t)}

where y - *(x,t) represents the height of the slag surface, which is a free

boundary. The boundary conditions for the potential 0 are given:

(2.6) y -0 on y -0,

(2.7) * - 0 on x - 0 and x - a, except on the tapping hole r0 ,

II(2.8) Ox V u on r 0 ,

(2.9) 0 y on y *(x,t)

The drainage rate Vout  of a working blast furnace increases as the tap hole

is eroded during tapping:

v V (k + ) (0 < t T)out out

where V ut: average drainage rate,

k: tap hole opening rate,

1: tap hole erosion rate.

(#y I Vin 

+x an ly(x,t) +Vin
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Where n is outward normal to 1 (t) and Vin is the inflow velocity of

slag at the surface. The initial shape of the free surface is given:

(2.12) *(x,0) - *0 (x) (0 < x < a)

In this report, we deal with the case Vout  is independent of t, but

dependent of y. Hereafter, we denote the free boundary problem (2.4)-(2.12)

by (P). By using the relation (2.2), (P) is reformulated into the

equations for (p and y fl:

(2.13) Ap - 0 in il (t) (0 < t < T)
a* t<

(2.14) - -Pg on y - 0,

(2.15) - 0 on x - 0 and x = a except on r0 ,

(2.16) , P0V on r0 ,

ax o

(2.17) P P0  on y =(x,t) ,

(2.18) , -d-(1 + 1 1 + +at pg x an 1y" Vin

(2.19) *(x,0) - *0 (x) (0 < x < a)

For simplicity, we take Pg - I and pO - 0 and denote the above problem

by (P').

-4-
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3. AN APPROXIMATION OF (P') BY MEANS OF THE METHOD OF INTEGRATED PENALTY

Wen we try to solve (P'), the numerical procedure must contain a

routine for solving the potential problem (2.13)-(2.17) for a given free

boundary y - #(x,t). After this is done, the outward normal derivative of

the potential on the free boundary can be calculated. And then, by solving

(2.18) and (2.19), the subsequent shape of the free boundary is obtained and

so on. If we apply the method of integrated penalty to solve the potential

problem (2.13)-(2.14), then the outward normal derivative of the potential

function on the free boundary are easily approximated [3, 10]. This is the

reason why we apply the method of integrated penalty to free boundary

problems.

Let B - {(x,y)10 < x < a, 0 < y < bi and Y(t) (t e a) be the

heaviside function. Then we penalize (P') as follows: Find

{p and ym-C for V C > 0,

(3.1) Ap -- Y(y- * (X,t))p 0 in B

(3.2) ax - 0 on x 0 and x = a, except on r 0 ,

(3.3) 2J!.V on ro
ax out

£(3.4) . -1 on y -0

(3.5) p M 0 on y b

C
Obviously, Y(y - *(x,t)) (0 < x < a, 0 < t < T) is the characteristic

function of B - £ (t), where

a C(t) - {(x,y)10 < x < a, 0 < y < * (x,t)}

It is well known that if we let C be small enough in (3.1), then p

approximates p in Q (t) and pC is nearly equal to zero in B - fl (t)

-5-



(91. Therefore the boundary condition (2.17) is approximately satisfied. If

we use the method of the integrated penalty, the equation (2.18) is

approximated by

( )-I b P(x,n)di} + Vi
(3.6) 3t -i n.

This approximation is based on the following fact, put

(3.7) r . 1 Y(y - *C)pC

b
(3.8) a = f rC(x,n,t)dl

y

By an application of Theorems 1.1 and 1.2 in (31, we have

(3.9) r + xy in V'(B)

/ 2 ~l-*=(x,t)" -Y nD()a

(3.10) s + - 1 (1 -Y) in V'(B) as £+0

By using (3.10), we have

(3.11) - / 1 6+ £- C fy p((xrt)d

X a- f = t (x,* ) - C

in a suitable topology. Substituting (3.11) into (2.18), we have (3.6). Now,

s (x,#C )- is called the integrated penalty. Hereafter we denote by (P£)

the penalized problem defined above. Finally we should note that there holds

the same discussion about (P) as mentioned above.

-6-



4. THE ASSUMPTIONS AND THE MAIN UZSULT

4.1. In order to obtain our main result, we need the following assumptions:

Assumption (A)

There exists a unique solution {p and y - *(xt)} of (P') such that

(4.1) pe c 3 'a(fla (t)) for t e (0,T] and a e (0,1)

(4.2) 4 e C3,0(O,a) for t e (0,T] and a e (0,1) ,

(4.3) # e c (0,T) for x e (0,a) .

Naturally, Vout included in the boundary condition should have regularity

property in order to obtain (4.1).

Assumption ()

There exists a unique solution {P and y - *E(x,t)) of (PC) such that

(4.4) pC e c3,a(Z (t)) for t e (0,T] and Q e (0,1) ,

(4.5) C 6 c 3a(0'a) for a e (0,1) ,

(4.6) 6 e c1 (0,T) for x 6 (O,a)

moreover

(4.7) I+l K3,0 <
C (0,a)

where X is independent of C.

4.2. Then we have the main result.

Theore. Under the assumptions (A) and (B), let C + 0, then

(4.8) *£ * uniformly in (Ma) x (0,T).

-7-



5. PREPARATIONS

In order to prove our main theorem, we have to prepare three

propositions.

5.1. We consider the following penalized problem defined in B: For

V > 0,

(5.1) -ApC + 1 *Y(y - *(x))&pC - 0 in B
C

(5.2) - = 0 on x 0 and x - a, except on r,

(5.3) on
ax - out onr,

(5.4) 21 . -1 on y - 0
ay

(5.5) p =0 on y = b.

Where y = O(x) is smooth in (0,a) and satisfies

(5.6) 0 < +(x) < b (0 < x < a)

Define

Q "{(x,y)I0 < x < a, 0 < y < #(x)}

and

r = {(x,y)IO < x < a, y - f(x)•

Let p0  be the solution of the problem:

0(5.7) Ap , 0 in $1,

(5.8) ax" 0 on x- 0 and x - a, except on r0

(5.9) 2!O V on r
ax out 0'

(5.10) p 0-0 on r and ay -1 on y- 0.

It is well known (9] that

-8-



p 01
(5.11) p + p (1 - Y) strongly in H (B) as E 0

Then we have

Proposition 1. Let £ be small enough and m ; 0. Then

(5.12) Ip£1r I O(E) pOn m,r (*)

0(5.13) Ip E + /-6 • kil < O(E) IRa-p--'I.

5n m,r = 3 n mr

(5.14) If p'dri - pE O p£ ,- •p m,r <_0(6)P r "~

Proof. See Kawarada and Hanada ([4], Chapter 2, p. 4).

5.2. We fix some y # 0 (x), which satisfies (5.6) and is smooth enough and

we denote the problem (5.7)-(5.10) by P0. Then any domain fl which is

diffeomorphic to S0 can be defined enough near 90 such that

(5.15) # = [(x,y)I0 < x < a, 0 < y < f(x)}

where #(x) = f0(x) + S(x) (0 < x < a)

with 6+ e C1U(O,a) (P A 1) 1

We consider a family of the penalized problem (5.1)-(5.), in which

Y(y - *(x)) is replaced by Y(y - *'(x)) (f' + 6). Denote the

solution of this problem by P Then

Proposition 2.

C £i

(5.16) -= lim P p  exists
CI C (0,a)

(51e ca (s) (e e (0,1))

(*) IVI indicates the norm of V in H"(G).
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Proof. See Dervieux ([1], Chapter 3, p. 47). Also 3 satisfies the same
£

properties as p does in Proposition I.

Proposition 3.

_C 0
(5.18) - pc <n~e >l < (/)E<n,e >1

3ey4 m,r y O(rl ym+1,-,r an m+i,r

(519 I dL / 3 O(E)E<n,e >1 x I!EI
(519 if 5*r - a m,r I y m.1,-,r an m+l,r

where n is unit outward normal to Sey W Vy - (0,I), <-,-> implies the

inner product in R and IvIM, ,r  indicates the norm of v in wm'(r)o

£
Proof. p satisfies

_C 1 ) p
(5.20) -Ap + - Y(y - (x))p - 0 in B .

Differentiating both sides of (5.20) with respect to *, we have

(5.21) -A 21 + I Y(y _ p c-a
(2 a a4, e ay p =0 in B.

Put QC= , multiply * e H' both sides of (5.21) and integrate ina, 0
B. Then we have

(5.22) ff VQC'V* dxdy + -1 ff YQ ' dxdy - "1 ff 2 pc ddy - 0
B B B

By using the relation,

fY p £<n
(5.23) ff p xdy - f p e > dr ,

B r

we have

-10-
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(5.24) f f (-A +- )Q. dxdy + f - " >)# d" - 0

B 
p

(by Green's formula) where QQQ)

(5.25) AQ M 0 in Q# ,

(5.26) -Ag1 
+  Q CgM "0 in B-Q+,

(5.27) Q0 Q, on r

0 1QO 1 C
(5.28) i n p *n,e > on r

(5.29) - 0 on x - 0 and x = a, except on r (i 01) ,

ax 0y

(5.30) %- o on r0

(5.31) 0 on y- ,

y

(5.32) QC 0 on y b.

(5.27) comes from (5.17). If we use the method developed in Xavarada and

Hanada ((4], Chapter 5, p. 15), we are able to obtain (5.18) and (5.19).

r-11-



6. THE PROOF OF THE MAIN THEOREM

6.1. We reformulate (2.18) into the following penalty formulation by means of

the method of integrated penalty:

(6.1) -d(, - 1 b q'(xn)dn) + V +at C in

q is the solution of the problem:

(6.)_Aq C 1 9 y(y - +(x,t))oq C - 0 in B(6.2) +~£~-o i

and q satisfies the same boundary conditions as p does on 3B. In order

to justify (6.1), we may show the following inequality:

fb 2 an c(r)

< IE/ d1 + #1 + f r+
- x C(O,a) . I an c(r)

an<II+#21 1- f" qcdr'l + 221ntlr

x c(o,a) C an H11(r

<I/ + xC(O,a) an 2 (by (5.13) and (5.14))
H()

o(/) I/ + *C(O ,a) an 2

< I(/ I -+# 21 12/ 62

_(6) 11 1 + +xIC(O,a) .1pc 3  (t)) (t e (O,T])

If we use the regularity property of the solution of an elliptic boundary

value problem (see Theorem 3.3.1 in (8]), we have

(6.4) Ip -< C(I* 3 o ) 0 IV U "

C(a (t)) C 3t(Oa) C

-12-



Combining (6.3) and (6.4), we have

1.b 2 1gnc ( ilclOa

(6.5) ,f q'x 2. + (/C)'C(I#U 3.
n, ()

Here we used (4.7) in the assumption (9).

6.2. #E satisfies

(3.6) -(1 - (x,)d) +

£I

Substracting (6.1) from (3.6) and putting NC # -., we have

d Cd

(6.6) a -. - - Moe) - (M) + o1re)

at

where F(46) p C db and F() f qEdt . Since there holds

1

FI# C )
- F(f) +f (*C (1 )*)s.

0

we may estimate the following Prfchet derivative:

(6.7) d ,_p,

where 4' s* + (1 - s)4 (s e (0,1)). From the assumptions (A) and (B), we

see

(6.) l C3,a (O,a)  x (U e (0,1))

Let us recall that was defined in proposition 3 of section 5.

6.3. If we put Q = , then Q satisfies some properties included in

-13-



propositions 2 and 3. Define r r (t)W ((x'y)Io x < a# y *(xt)
Let us estimate (6.7) for m > 0,

b

(6.9) if Qdl p (*C)ImV
£ H (

x (f~ Qedarc)l QC)

2£

(note I +4 <n,e > )4
x y

V/21

<x.(If Q d(r* ) - El £
w m, CC) (r£ C1 H m(r C

I£ )
rE H(r)

w 0()Xw (r) w (r) H Cr)

(by (5.18) and (5.19)). Putting m 1 in the above inequality,

(6.10) If Q dTn - P (* )I < ECO C 1, 1n221
CC~r )W (0,a) H Cr

C (0,a)

Here we used the same discussions as in 6.1 and note that K is independent

of P e (0,1).

-14-



6.4. Integrating (6.6) in (O,t), we have

N¢ d t

(6.11) f F(#))& +

0

from which

(6.12) 3M (,t)I Ia)CdT + O(C)0t
C(0,a) -C 0 - 14ij* C( 1a) C(.a)

Substituting (6.10) into (6.12), we have

t

(6.13) 1W~ (,t)lC(O,a) - °K f IMC(e,T)C(O,a)d + 0(r)
0

from which

(6.14) EI (.,tlI , _ 0(h) for V t e 10,T]
C(0,a)

Therefore

am NC(.,t)lIC(o,a) 0 as e 0.
(6.15) mxta

te(0,TJ (0a

-15-
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ABSTRACT (cont.)

The objective of this report is to give a mathematical justification of
the penalty method formulation, in which the perturbation with respect to the
domain and the asymptotic properties of solutions of the boundary value
problem for an elliptic equation with penalty terms are used.
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